• site home
  • blog home
  • galleries
  • contact
  • underwater
  • the bleeding edge

the last word

Photography meets digital computer technology. Photography wins -- most of the time.

You are here: Home / The Last Word / Combed histograms

Combed histograms

March 27, 2013 JimK Leave a Comment

I started a thread on Luminous Landscape about computing unity gain ISO from a single exposure, and it’s gotten pretty interesting. There have been useful discussions about what good knowing the Unity Gain ISO is in picture-making. One of the discussion led me to make some test images and look closely at their histograms. In many of the images, I found comb-like structures with many empty buckets.

I made some exposures with five different cameras under the same conditions. The subject was the back of a lens cap. The exposure was 1/4 sec. The aperture was all the way stopped down, just to make sure. The ISO was 6400. The exposures were the first after the camera had “rested” a bit, although I’d seen not much in the way of thermal effects previously. I selected a central area 200×200 pixels, and ran a histogram of the region between a count of 4 and one of 100.

I used dark noise as a way to make sure that the always-on-no-matter-what-you-do tone curve compression of the Sony cameras wouldn’t come into play.

First, let’s look at the two cameras that behaved as expected. The first of those is the Nikon D4.

A few missing codes in the red and blue channels, which could well be due to ADC defects, or also digital gain applied to the red and blue channels. I’m thinking it’s digital gain, because the noise appears to be higher in the red and blue, and I can’t think of a reason why that would happen.

The next unsurprising results are from the Leica M9:

Noisier than the D4, to be sure, but that’s no surprise, and no missing codes at all.

The Sony RX-1 shows an interesting result:

There are missing codes galore. The two green channels look quite different from each other. The upper green channel and the blue channel seem to be acting as if they’d been digitized by a 12-bit ADC, while the lower green channel and the red channel are doing a fairly good imitation of 13-bit digitized signals. The loss of the LSB might be due to some kind of digital gain that Sony puts in at higher ISOs, but I can’t image that they’d so that with some channels and not with others, so I am at a loss to explain the low-resolution green channel and the blue channel results. A really bad ADC might miss some codes, but this is a 40,000 pixel sample (10,000 for each color plane), and probably is using several ADCs. I’m at a loss here.

Next up, the Sony NEX-7:

Wow! We’re seeing steps of about 16 LSBs between occupied buckets, but it’s not exactly 16 LSBs, and it’s not just as if the lower four bits have been lopped off.

Finally, the Nikon D800E:

Although the channels are mostly looking like they’d been digitized with a 12-bit ADC, there are many places where adjacent 14-bit codes are occupied, indicating that the comblike nature of the histogram is not the result of any planned processing.

Maybe this is an invalid test because dark noise may be patterned, but I think there’s something worth exploring here.

The Last Word

← Using photon noise to determine unity gain ISO, part 4 Low-signal histograms at various ISOs →

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

May 2025
S M T W T F S
 123
45678910
11121314151617
18192021222324
25262728293031
« Apr    

Articles

  • About
    • Patents and papers about color
    • Who am I?
  • How to…
    • Backing up photographic images
    • How to change email providers
    • How to shoot slanted edge images for me
  • Lens screening testing
    • Equipment and Software
    • Examples
      • Bad and OK 200-600 at 600
      • Excellent 180-400 zoom
      • Fair 14-30mm zoom
      • Good 100-200 mm MF zoom
      • Good 100-400 zoom
      • Good 100mm lens on P1 P45+
      • Good 120mm MF lens
      • Good 18mm FF lens
      • Good 24-105 mm FF lens
      • Good 24-70 FF zoom
      • Good 35 mm FF lens
      • Good 35-70 MF lens
      • Good 60 mm lens on IQ3-100
      • Good 63 mm MF lens
      • Good 65 mm FF lens
      • Good 85 mm FF lens
      • Good and bad 25mm FF lenses
      • Good zoom at 24 mm
      • Marginal 18mm lens
      • Marginal 35mm FF lens
      • Mildly problematic 55 mm FF lens
      • OK 16-35mm zoom
      • OK 60mm lens on P1 P45+
      • OK Sony 600mm f/4
      • Pretty good 16-35 FF zoom
      • Pretty good 90mm FF lens
      • Problematic 400 mm FF lens
      • Tilted 20 mm f/1.8 FF lens
      • Tilted 30 mm MF lens
      • Tilted 50 mm FF lens
      • Two 15mm FF lenses
    • Found a problem – now what?
    • Goals for this test
    • Minimum target distances
      • MFT
      • APS-C
      • Full frame
      • Small medium format
    • Printable Siemens Star targets
    • Target size on sensor
      • MFT
      • APS-C
      • Full frame
      • Small medium format
    • Test instructions — postproduction
    • Test instructions — reading the images
    • Test instructions – capture
    • Theory of the test
    • What’s wrong with conventional lens screening?
  • Previsualization heresy
  • Privacy Policy
  • Recommended photographic web sites
  • Using in-camera histograms for ETTR
    • Acknowledgments
    • Why ETTR?
    • Normal in-camera histograms
    • Image processing for in-camera histograms
    • Making the in-camera histogram closely represent the raw histogram
    • Shortcuts to UniWB
    • Preparing for monitor-based UniWB
    • A one-step UniWB procedure
    • The math behind the one-step method
    • Iteration using Newton’s Method

Category List

Recent Comments

  • JimK on How Sensor Noise Scales with Exposure Time
  • Štěpán Kaňa on Calculating reach for wildlife photography
  • Štěpán Kaňa on How Sensor Noise Scales with Exposure Time
  • JimK on Calculating reach for wildlife photography
  • Geofrey on Calculating reach for wildlife photography
  • JimK on Calculating reach for wildlife photography
  • Geofrey on Calculating reach for wildlife photography
  • Javier Sanchez on The 16-Bit Fallacy: Why More Isn’t Always Better in Medium Format Cameras
  • Mike MacDonald on Your photograph looks like a painting?
  • Mike MacDonald on Your photograph looks like a painting?

Archives

Copyright © 2025 · Daily Dish Pro On Genesis Framework · WordPress · Log in

Unless otherwise noted, all images copyright Jim Kasson.