• site home
  • blog home
  • galleries
  • contact
  • underwater
  • the bleeding edge

the last word

Photography meets digital computer technology. Photography wins -- most of the time.

You are here: Home / The Last Word / Camera modeling details

Camera modeling details

December 13, 2014 JimK Leave a Comment

Warning: this is going to be a geeky, inside-baseball post. Unless you are interested in what goes on behind the curtain when models are fitted to data, I suggest you pass this one by.

In the previous post, I talked about using optimum-seeking methods to adjust the three parameters of the modeled camera – full well capacity, pre-amp read noise, and post-amp read noise – so that simulated performance of the model camera came as close as possible to matching the measured performance of the real camera.

I did this by combining four things:

  • The data set of measured means and standard deviations.
  • A camera simulator.
  • A way to compare the modeled and the measured results, and derive a single real, positive number which gets smaller as the differences between the modeled and the measured results decreases, reaching zero if the two sets of results are identical. Let’s call this number the error.
  • A computer program, called an optimum-seeking program, which manipulates the parameters of the camera simulator in such a way as to minimize the error.

I described the essential characteristics of the simulated camera in this post, and described the data set in this one. Now I’ll tell you about the other two.

The optimum seeking algorithm that I’m using is one that I’ve used with varying, but mostly good, success since 1970. In those days, I just called it the downhill simplex algorithm, but these days, allocating credit where credit is due, it’s usually called the Nelder–Mead method. It has several advantages, such as the ability to operate, albeit with some difficulty, with error functions whose derivative are discontinuous, and not needing the solution space to be scaled.

Like all optimum seeking programs of this class, it works best when there is only one local minimum. In many real-world problems, including this one, that is not the case. These are called polymodal problems. With these problems, the optimum seeking program tends to get hung up on a local minimum, not finding another local minimum that happens to be the global minimum. In the cameras that I’ve tested so far, it appears that simply picking a reasonable starting point is sufficient to allow the algorithm to converge to the global minimum.

The error function that I’m using is the sum of the squared error between measured and modeled standard deviation at each data point. Specifically, for every mean value in the measured data set, we compute the modeled standard deviation at the ISO associated with the mean, we subtract the model standard deviation from the measured standard deviation, square that value, and add it to the running sum.

There are often hard constraints in design problems. These introduce places where the multidimensional derivative of the function to be minimized is discontinuous. While the Nelder–Mead method deals fairly well with these discontinuities, I’ve chosen to avoid one whole set of them in the following manner (now things get really geeky).

One would think that you shouldn’t allow either pre-amp read noise post-amp read noise to have values below zero. So did I, at first. But because of the way that the two combine to yield total read noise, negative values for one or both work just fine. Here’s the basic formula for combining the two kinds of read noise.

RN = sqrt((preampRN * gain) ^ 2 + postampRN ^ 2)

Since the pre-amp and the post-amp terms both get squared, it doesn’t matter if they go negative. At the end of the calculation, if negative values come out as optimum ones, I simply change their sign.

The Last Word

← Modeling ISO-induced variations in read noise Adrift in a sea of acronyms →

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

May 2025
S M T W T F S
 123
45678910
11121314151617
18192021222324
25262728293031
« Apr    

Articles

  • About
    • Patents and papers about color
    • Who am I?
  • How to…
    • Backing up photographic images
    • How to change email providers
    • How to shoot slanted edge images for me
  • Lens screening testing
    • Equipment and Software
    • Examples
      • Bad and OK 200-600 at 600
      • Excellent 180-400 zoom
      • Fair 14-30mm zoom
      • Good 100-200 mm MF zoom
      • Good 100-400 zoom
      • Good 100mm lens on P1 P45+
      • Good 120mm MF lens
      • Good 18mm FF lens
      • Good 24-105 mm FF lens
      • Good 24-70 FF zoom
      • Good 35 mm FF lens
      • Good 35-70 MF lens
      • Good 60 mm lens on IQ3-100
      • Good 63 mm MF lens
      • Good 65 mm FF lens
      • Good 85 mm FF lens
      • Good and bad 25mm FF lenses
      • Good zoom at 24 mm
      • Marginal 18mm lens
      • Marginal 35mm FF lens
      • Mildly problematic 55 mm FF lens
      • OK 16-35mm zoom
      • OK 60mm lens on P1 P45+
      • OK Sony 600mm f/4
      • Pretty good 16-35 FF zoom
      • Pretty good 90mm FF lens
      • Problematic 400 mm FF lens
      • Tilted 20 mm f/1.8 FF lens
      • Tilted 30 mm MF lens
      • Tilted 50 mm FF lens
      • Two 15mm FF lenses
    • Found a problem – now what?
    • Goals for this test
    • Minimum target distances
      • MFT
      • APS-C
      • Full frame
      • Small medium format
    • Printable Siemens Star targets
    • Target size on sensor
      • MFT
      • APS-C
      • Full frame
      • Small medium format
    • Test instructions — postproduction
    • Test instructions — reading the images
    • Test instructions – capture
    • Theory of the test
    • What’s wrong with conventional lens screening?
  • Previsualization heresy
  • Privacy Policy
  • Recommended photographic web sites
  • Using in-camera histograms for ETTR
    • Acknowledgments
    • Why ETTR?
    • Normal in-camera histograms
    • Image processing for in-camera histograms
    • Making the in-camera histogram closely represent the raw histogram
    • Shortcuts to UniWB
    • Preparing for monitor-based UniWB
    • A one-step UniWB procedure
    • The math behind the one-step method
    • Iteration using Newton’s Method

Category List

Recent Comments

  • JimK on Goldilocks and the three flashes
  • DC Wedding Photographer on Goldilocks and the three flashes
  • Wedding Photographer in DC on The 16-Bit Fallacy: Why More Isn’t Always Better in Medium Format Cameras
  • JimK on Fujifilm GFX 100S II precision
  • Renjie Zhu on Fujifilm GFX 100S II precision
  • JimK on Fuji 20-35/4 landscape field curvature at 23mm vs 23/4 GF
  • Ivo de Man on Fuji 20-35/4 landscape field curvature at 23mm vs 23/4 GF
  • JimK on Fuji 20-35/4 landscape field curvature at 23mm vs 23/4 GF
  • JimK on Fuji 20-35/4 landscape field curvature at 23mm vs 23/4 GF
  • Ivo de Man on Fuji 20-35/4 landscape field curvature at 23mm vs 23/4 GF

Archives

Copyright © 2025 · Daily Dish Pro On Genesis Framework · WordPress · Log in

Unless otherwise noted, all images copyright Jim Kasson.