the last word

Photography meets digital computer technology. Photography wins -- most of the time.

  • site home
  • blog home
  • galleries
  • contact
  • underwater
  • the bleeding edge
You are here: Home / The Last Word / ETTR testing, part 7

ETTR testing, part 7

December 6, 2012 By JimK Leave a Comment

I’ve tested the D4 in other lighting conditions, with other subjects, with success so far. I’ve also attempted correcting the Sony NEX-7 using the same technique. The correction turned out to be remarkably similar (or maybe not remarkable; Nikon uses mostly Sony chips in their best cameras) to the D4: 5000K, +6G.

The NEX-7 color histograms exhibit behavior that is odd when compared to the luminance histogram. I could choose settings that got the green histogram right, or settings that got the luminance histogram right. I chose to calibrate the luminance histogram, since that’s what you see in the corner of the viewfinder before you trip the shutter.

Here’s the final calibration image, although it appears that the subject doesn’t seem to be important:

Here’s the in-camera histogram:

Here’s the Rawdigger histogram:

The live histogram capability of the NEX-7 combined with making that histogram approximate the true raw histogram is a marvelous thing. It means you can select your preferred exposure mode (mine is aperture priority for most things) and make whatever ETTR corrections you want with the exposure compensation dial as you compose the picture. No trial exposures to see the histogram are required. Makes for a fluid image-making style without sacrificing quality.

← ETTR — the return of the spotmeter? Testing for ETTR, part 8 →

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

January 2021
S M T W T F S
 12
3456789
10111213141516
17181920212223
24252627282930
31  
« Dec    

Articles

  • About
    • Patents and papers about color
    • Who am I?
  • How to…
    • Backing up photographic images
    • How to change email providers
  • Lens screening testing
    • Equipment and Software
    • Examples
      • Bad and OK 200-600 at 600
      • Excellent 180-400 zoom
      • Fair 14-30mm zoom
      • Good 100-200 mm MF zoom
      • Good 100-400 zoom
      • Good 100mm lens on P1 P45+
      • Good 120mm MF lens
      • Good 18mm FF lens
      • Good 24-105 mm FF lens
      • Good 24-70 FF zoom
      • Good 35 mm FF lens
      • Good 60 mm lens on IQ3-100
      • Good 63 mm MF lens
      • Good 65 mm FF lens
      • Good 85 mm FF lens
      • Good and bad 25mm FF lenses
      • Good zoom at 24 mm
      • Marginal 18mm lens
      • Marginal 35mm FF lens
      • Mildly problematic 55 mm FF lens
      • OK 16-35mm zoom
      • OK 60mm lens on P1 P45+
      • OK Sony 600mm f/4
      • Pretty good 16-35 FF zoom
      • Pretty good 90mm FF lens
      • Problematic 400 mm FF lens
      • Tilted 20 mm f/1.8 FF lens
      • Tilted 30 mm MF lens
      • Tilted 50 mm FF lens
      • Two 15mm FF lenses
    • Found a problem – now what?
    • Goals for this test
    • Minimum target distances
      • MFT
      • APS-C
      • Full frame
      • Small medium format
    • Printable Siemens Star targets
    • Target size on sensor
      • MFT
      • APS-C
      • Full frame
      • Small medium format
    • Test instructions — postproduction
    • Test instructions — reading the images
    • Test instructions – capture
    • Theory of the test
    • What’s wrong with conventional lens screening?
  • Previsualization heresy
  • Privacy Policy
  • Recommended photographic web sites
  • Using in-camera histograms for ETTR
    • Acknowledgments
    • Why ETTR?
    • Normal in-camera histograms
    • Image processing for in-camera histograms
    • Making the in-camera histogram closely represent the raw histogram
    • Shortcuts to UniWB
    • Preparing for monitor-based UniWB
    • A one-step UniWB procedure
    • The math behind the one-step method
    • Iteration using Newton’s Method

Category List

Recent Comments

  • JimK on Detectability of visual signals below the noise
  • JimK on Does repeated JPEG compression ruin images?
  • Bill Claff on Detectability of visual signals below the noise
  • Mike B on Does repeated JPEG compression ruin images?
  • Robert Frangioso on Leica 280/4 Apo-Telyt R on GFX 50R in infrared
  • Robert Frangioso on Why so few posts?
  • Ken on Noise reduction and downsampling
  • Robert Kuechle on Chronography video up
  • JimK on Leica 90/2 Apo-Summicron ASPH-M on GFX 50S
  • DanB on Leica 90/2 Apo-Summicron ASPH-M on GFX 50S

Archives

Unless otherwise noted, all images copyright Jim Kasson.