This is one in a series of posts on the Fujifilm GFX 100S. You should be able to find all the posts about that camera in the Category List on the right sidebar, below the Articles widget. There’s a drop-down menu there that you can use to get to all the posts in this series; just look for “GFX 100S”. Since it’s more about the lenses than the camera, I’m also tagging it with the other Fuji GFX tags.
In the previous post I showed you some data on the depth of field of normal and shorter focal length GF lenses on the GFX 100S. In this one, I’ll do the same for the longer lenses.
There is a body of opinion that somehow depth of field (DOF) calculators don’t work for GFX cameras. The proponents of that school of thought say that it’s not just a matter of picking the appropriate circle of confusion (CoC) diameter; it’s more fundamental than that. Some of them cite publications by Zeiss that say that the lens aberrations affect the DOF performance of the lens, which is undeniably true, but may or may not be applicable in the case of the GF lenses, which are with some exceptions fairly well corrected.
It occured to me that I have in my current lens-testing protocol a means to measure the actual circles of confusion produced by the GF lenses on the GFX 100S as the subject is defocused, which would allow the actual DOF to be compared to the DOF predicted by geometric optics, upon which depth of field calculators are based.
For the plots to follow, I’ve used the white-balanced raw channels as computer fodder, and used a threshold to define blur circle size that is fairly pessimistic. I take the intensity at the center of the blur circle, and define the radius of the blur circle as the distance between the center and that point where the intensity drops to one tenth of the value at the center. The blur circle data plotted above that MTF Mapper covers both sides of the line spread function or PSF, and I’m computing the radius of the blur circle both ways, averaging those two numbers, and doubling it to get the diameter of the blur circle. That gives me the red curves in the plots below. The blue curves are what geometric optics says should be the case for an ideal lens with no diffraction.
The 80/1.7 GF:
Now for the 110, the 120, the 45-100 at 100mm, and the 100-200 at 100mm:
At f/8:
And here’s a really long lens:
Leave a Reply