the last word

Photography meets digital computer technology. Photography wins -- most of the time.

  • site home
  • blog home
  • galleries
  • contact
  • underwater
  • the bleeding edge
You are here: Home / GFX 100 / Fuji 120/4 GF LoCA at close distances

Fuji 120/4 GF LoCA at close distances

August 22, 2021 JimK Leave a Comment

This is one in a series of posts on the Fujifilm GFX 100. You should be able to find all the posts about that camera in the Category List on the right sidebar, below the Articles widget. There’s a drop-down menu there that you can use to get to all the posts in this series; just look for “GFX 100”. Since it’s more about the lenses than the camera, I’m also tagging it with the other Fuji GFX tags.

In the previous post, I looked at the microcontrast of the Fujifilm 120 mm f/4 GF lens at minimum focusing distance (MFD) with and without two 18mm extension tubes. In this post I’m going to look at lens sharpness versus focal plane displacement for each of the raw color planes.

Here’s a picture of the setup:

Here’s the test protocol:

  • GFX 100
  • Foba camera stand
  • C1 head
  • 2 each 18mm Fuji extension tubes
  • Lens focused to close to as near as it would focus
  • ISO 100
  • Electronic shutter
  • 10-second self timer
  • f/4 through f/11 in whole-stop steps
  • Exposure time set by camera in A mode
  • Focus bracketing, step size 1, 150 exposures
  • Initial focus short of target
  • Convert RAF to DNG using Adobe DNG Converter
  • Extract raw mosaics with dcraw
  • Extract slanted edge for each raw plane in a Matlab program the Jack Hogan originally wrote, and that I’ve been modifying for years.
  • Analyze the slanted edges and produce MTF curves using MTF Mapper (great program; thanks, Frans)
  • Fit curves to the MTF Mapper MTF50 values in Matlab
  • Correct for systematic GFX focus bracketing inconsistencies
  • Analyze and graph in Matlab

At f/4 in the center, first with the 36 mm worth of extension tubes:

Let me decode the chart. The vertical axis is MTF50 in cycles/picture height. The horizontal axis is displacement of the sensor die (image field) focal plane in micrometers. In the object field (the subject side of the lens) the left side of the chart represents front-focusing, and the right side of the graph represents back focusing. There are four lines plotted. The red on is the red raw channel, the blue one is the blue raw channel, and the green one is the average of the two green raw channels. The black line is a combination of the other three lines after white balancing to the target. It can be considered a stand-in for a luminance MTF50 curve. The white-balanced (WB) raw curve peaks at about the same place as the green curve, since green is the main component of the WB raw curve. However, the peak of the WB raw curve is lower than the green curve, because the red and blue curves don’t peak in the same place as the green curve. That is the result of the lens’ longitudinal chromatic aberration (LoCA).

The height of the black curve at its peak is the best estimate of the sharpness of the lens that can be derived from this chart. In this case, it is a bit lower than the green channel curve because the lens has considerable LoCA.

The same curves with no extension tubes:

There is a bit more LoCA, but the lens is much sharper here. In fact, if you look at the white-balanced curves, it’s almost three times as sharp!

At f/5:6, first with the tubes:

And without:

The lens is almost twice as sharp without the tubes.

Next up, f/8, first with the tubes:

And without the tubes:

Almost twice as sharp without the tubes.

At f/11, with the tubes:

And without:

Now, at the far right edge, for a horizontal slanted edge.

At f/4, with tubes:

 

And without:

The results without the tubes are more than 4 times sharper.

At f/5.6, with tubes:

And without:

Big difference.

At f/8, with the tubes:

g

And without:

There is still  big difference.

At f/11, with tubes:

 

And without:

This test technique calibrates out field curvature. If its effect were included the edge results would look worse, assuming that one focused in the center.

 

 

 

GFX 100, GFX 100S, GFX 50S

← Fuji 120/4 GF microcontrast at close distances Field curvature with the 110/2 and 120/4 GF lenses at close distances →

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

March 2023
S M T W T F S
 1234
567891011
12131415161718
19202122232425
262728293031  
« Jan    

Articles

  • About
    • Patents and papers about color
    • Who am I?
  • Good 35-70 MF lens
  • How to…
    • Backing up photographic images
    • How to change email providers
  • Lens screening testing
    • Equipment and Software
    • Examples
      • Bad and OK 200-600 at 600
      • Excellent 180-400 zoom
      • Fair 14-30mm zoom
      • Good 100-200 mm MF zoom
      • Good 100-400 zoom
      • Good 100mm lens on P1 P45+
      • Good 120mm MF lens
      • Good 18mm FF lens
      • Good 24-105 mm FF lens
      • Good 24-70 FF zoom
      • Good 35 mm FF lens
      • Good 60 mm lens on IQ3-100
      • Good 63 mm MF lens
      • Good 65 mm FF lens
      • Good 85 mm FF lens
      • Good and bad 25mm FF lenses
      • Good zoom at 24 mm
      • Marginal 18mm lens
      • Marginal 35mm FF lens
      • Mildly problematic 55 mm FF lens
      • OK 16-35mm zoom
      • OK 60mm lens on P1 P45+
      • OK Sony 600mm f/4
      • Pretty good 16-35 FF zoom
      • Pretty good 90mm FF lens
      • Problematic 400 mm FF lens
      • Tilted 20 mm f/1.8 FF lens
      • Tilted 30 mm MF lens
      • Tilted 50 mm FF lens
      • Two 15mm FF lenses
    • Found a problem – now what?
    • Goals for this test
    • Minimum target distances
      • MFT
      • APS-C
      • Full frame
      • Small medium format
    • Printable Siemens Star targets
    • Target size on sensor
      • MFT
      • APS-C
      • Full frame
      • Small medium format
    • Test instructions — postproduction
    • Test instructions — reading the images
    • Test instructions – capture
    • Theory of the test
    • What’s wrong with conventional lens screening?
  • Previsualization heresy
  • Privacy Policy
  • Recommended photographic web sites
  • Using in-camera histograms for ETTR
    • Acknowledgments
    • Why ETTR?
    • Normal in-camera histograms
    • Image processing for in-camera histograms
    • Making the in-camera histogram closely represent the raw histogram
    • Shortcuts to UniWB
    • Preparing for monitor-based UniWB
    • A one-step UniWB procedure
    • The math behind the one-step method
    • Iteration using Newton’s Method

Category List

Recent Comments

  • JimK on Fujifilm GFX 100S pixel shift, visuals
  • Sarmed Mirza on Fujifilm GFX 100S pixel shift, visuals
  • lancej on Two ways to improve the Q2 handling
  • JimK on Sony 135 STF on GFX-50R, sharpness
  • K on Sony 135 STF on GFX-50R, sharpness
  • Mal Paso on Christmas tree light bokeh with the XCD 38V on the X2D
  • Sebastian on More on tilted adapters
  • JimK on On microlens size in the GFX 100 and GFX 50R/S
  • Kyle Krug on On microlens size in the GFX 100 and GFX 50R/S
  • JimK on Hasselblad X2D electronic shutter scan time

Archives

Copyright © 2023 · Daily Dish Pro On Genesis Framework · WordPress · Log in

Unless otherwise noted, all images copyright Jim Kasson.